新闻:周口RG聚合物防水涂料厂家运城资讯
采用单轴贯入试验,测定了泡沫沥青再生混合料在不同条件下的抗剪强度.研究表明:集料级配在规定范围内时,泡沫沥青冷再生混合料抗剪强度;加入1.5%(质量分数)的水泥可以使泡沫沥青冷再生混合料抗剪强度提高5倍左右;沥青的发泡效果决定了对应抗剪强度的沥青用量,发泡效果越好,对应抗剪强度的沥青用量越小;沥青黏度越高,相同沥青含量下泡沫沥青冷再生混合料的抗剪强度就越高;采用40℃烘箱养生3 d的试件其抗剪强度与自然养生10 d的试件相当;温度从40℃升至60℃,泡沫沥青冷再生混合料抗剪强度则下降一半.
rg防水涂料
产品特点 本品采用德国先进技术配方,由改性的高性能合成乳液和无机聚合物砂浆干粉料按照科学的配合比复配而成。无害无腐蚀,符合环保要求,可直接用于饮用水池。
产品用途
品主要用于地下室、地下隧道、卫浴间、水池等,特别潮湿及在水中浸泡的条件下施工。
执行标准 GB/T23445-2009
技术参数
新闻:周口RG聚合物防水涂料厂家运城资讯
试验研究了4种(表观)密度的EPS(发泡聚苯乙烯)混凝土的静态压缩性能和劈裂性能,建立了较低密度EPS混凝土的应力-应变关系模型,赋予了各参数相应的物理意义.结果表明:当EPS混凝土密度较高时,其呈现出明显的准脆性材料特性;当EPS混凝土密度较低时,其呈现出明显的泡沫吸能材料特性.所建立的较低密度EPS混凝土应力-应变关系模型能较好地拟合试验结果.相同相对密度的EPS混凝土,其相对劈裂强度表现出明显的粒子尺寸效应.随EPS混凝土相对密度的降低,其相对劈裂强度粒子尺寸效应逐渐减小.
施工工艺一、基面处理:
1、基面必须平整、牢固、干净、无明水、无渗漏,不平处须先找平。
2、渗漏处必须先用901快速堵漏剂进行堵漏处理,阴阳角应做成圆弧角。
二、材料配制:
1、按胶液:粉料=1:2的比例用搅拌器将胶液与粉料充分搅拌均匀,直至料中不含团粒。
2、打底层涂料等,如需加水,则要先在液料中加水,用搅拌器边搅拌边徐徐加入粉料。
3、彩色层涂料的颜料加量为液料的10%以下,并且只需要在面层涂料中添加颜料。
三、涂覆施工:
1、根据工程的特点和要求,选择适当的工法。
2、涂覆时要尽量均匀,不能有局部沉积,并要求多滚刷几次使涂料与基层之间不留气泡,粘结严实。
3、在潮湿或不吸水的基层上使用时,不需要打底层。
4、各层之间的时间间隔以前一层涂膜干固不粘为准。若防水层厚度不够,尤其是立面施工,
可加涂一层或数层。
5、加无纺布施工时,下涂和上涂要连续施工,无纺布要铺贴平直,并用刷子刷实不留空鼓。
注意事项
新闻:周口RG聚合物防水涂料厂家运城资讯
通过应力控制模式下的劈裂疲劳试验,了不同掺量(纤维体积与沥青混合料体积之比)和长径比的聚酯纤维沥青混凝土劲度模量的衰减特征;结合损伤力学理论,提出了纤维沥青混凝土的疲劳破坏准则;在应力比-疲劳寿命(S-N)方程的基础上,建立了考虑纤维含量特征参数影响的纤维沥青混凝土疲劳寿命计算方法.结果表明:纤维含量特征参数能综合反映纤维掺量和长径比对沥青混凝土疲劳性能的综合影响;AC-13F型聚酯纤维沥青混凝土的纤维掺量为0.35%,长径比为324,纤维含量特征参数值为1.13.
1、不能在0℃以下或雨中施工,在特别潮湿又不通风的环境中,会影响干燥及成膜。
2、一般条件下,涂料可用约3小时,涂层干固时间约2~6小时。现场环境温度低、湿度大、
通风不好,干固时间长些,反之短些。
3、选择其他颜色时,建议选用氧化铁系列颜料,其它颜料须先试验确认无异常现象后方可使用。
包装储运
新闻:周口RG聚合物防水涂料厂家运城资讯
使用简易电阻测试法测试并计算碱矿渣混凝土不同深度的电阻率比,然后使用千分表法测试不同水胶比碱矿渣混凝土的收缩性能,并使用质量法测试同条件下碱矿渣混凝土的质量损失.建立了碱矿渣混凝土质量损失与干燥收缩之间的线性关系,探寻了碱矿渣混凝土电阻率比与质量损失之间的关系.结果表明:碱矿渣混凝土质量损失与干燥收缩之间的相关系数R2大于0.890 9,且拟合曲线的斜率与碱矿渣混凝土水胶比相关性较大;碱矿渣混凝土的电阻率比对其质量损失十分敏感,且呈正相关,因此可通过监测碱矿渣混凝土的电阻率比来评价其干燥收缩性能.
郑重声明
本资料中所提供的数据是基于我公司现有的知识、经验和条件,我们所进行的试验不可能完全囊括所有使用过程中可能产生影响的大量因素。本产品使用超出厂商控制,本公司不承担由于使用不当而产生的任何责任,使用时敬请参照本品说明书,相关问题请咨询当地经销商或本公司技术服务部门。
新闻:周口RG聚合物防水涂料厂家运城资讯
为了复合材料壳体封头在内压作用下的变形规律,本文针对椭球比为1.7的复合材料壳体前封头,采用ANSYS商业软件中的层合单元对其进行,数值模拟与水压试验结果基本一致。首先模拟了椭球比为2.0的复合材料壳体前封头,结果表明,前开口至赤道部位经线方向顺纤维应变表现为先加后较小的规律,同时,前封头部位的位移发生在封头部位经线方向的中部;另外,对比了椭球比为1.7的封头比和椭球比为2的封头内压应变,前者应力变化更均匀,符合复合材料壳体的等应力封头设计要求。