新闻:mma彩色防滑路面材料_彩色防滑路面报价
介绍了一种由拉剪试验结合有限元计算得到界面剪切内聚力模型的方法,并从能量释放率的角度验证了该方法的可行性。通过树脂混凝土/钢粘接试样的单侧拉剪试验,得到粘接界面的载荷-加载位移关系图,基于双线性内聚力剪切模型对受拉剪过程的得到界面内聚力模型的特征错动位移和错动位移的比值,再结合有限元模拟计算拉剪试验过程,得到界面内聚力模型的应力和特征错动位移,后比较了拉剪试验的能量释放率和计算得到的能量释放率,两者相对误差在10%以内,认为计算内聚力的方法是可行的。
彩色防滑路面分享彩色沥青路面施工的流程:
一、路面施工流程
1、混合料拌和与运输
华卓彩色沥青混合料与普通沥青混合料施工工艺有相似之处,
但应着重注意以下事项:
1.1. 清洗原有黑色沥青上料管线,并对接彩色沥青设备。
1.2.拌和前,应将搅拌站的拌和缸采用热的集料干拌数次以清洗干净。
1.3.原料性能应稳定、使生产目标配合比能限度地接近设计配 合比;
1.4. 集料温度控制在160-170℃之间,沥青加热温度160℃一170℃。
1.5. 颜料采用袋包装,使用前计算好每一缸混合料需要加入的颜料的数量,并预先将包装打开,当集料进入拌和缸后,即将颜料直接人工投入拌和缸中,建议采用60秒以上的时间进行拌和,具体拌和时间以从拌出的沥青混合料外观来看,沥青裹覆均匀,无花白颗粒.颜色均匀一致.无结团成块、粗细颗粒离析现象,能满足施工质量要求。
1.6. 用于运输混合料的车辆及覆盖物也应事先清洗干净。
2、混合料摊铺。
新闻:mma彩色防滑路面材料_彩色防滑路面报价
以融冰界面位移与相变传热理论为基础,考虑了玻璃纤维强树脂复合材料层和冰层的升温蓄热、界面冰层融化相变潜热以及冰层与周围空气的对流传质、对流换热和辐射换热等影响,提出了一种基于高分子电热膜的电热除冰功率密度计算的数学模型。对特定除冰模型进行了功率密度的计算,并通过模拟特定环境下的实际除冰实验对计算结果的准确性进行了验证,计算结果与实验结果吻合较好。
2.1. 彩色沥青混合料与常规沥青混合料摊铺各道工序基本相同;
2.2. 摊铺机应清洗干净,特别是熨平板应使用溶剂清洗或先将彩色沥青混合料摊铺于路面下层直至表面没有条纹为止。
2.3. 开始摊铺时工期安排,考虑混合料的生产、运输、摊铺和碾压能力,确保摊铺连续;并做到全幅摊铺不间断一次性成型,以保持色泽一致,粒料均匀、美观。
3、混合料压实成型。
3.1. 压路机水箱中的水应更换,并将任何铁锈痕迹冲洗干净。压路机应停于木垫上使其不接触黑色沥青下面层,碾压时直接从木垫上行驶至彩色混合料上。碾压可在摊铺后随即进行。在此过程中使用的任何与混合料接触的机具都应清洗干净。
3.2. 碾压组合方式,与常规沥青混合料相同。
3.3. 碾压强度,在不把石料压花的前提下,尽量压实,要注意避免过压,将石料压碎,将会影响色彩效果。
3.4. 碾压开始后,即必须停止手工作业或人工摊铺及补料,否则由于表面有水,人工摊铺及补料将难以与下面的料粘结在一起。这一点是先要对施工人员进行反复强调。
3.5. 为防止彩色沥青面层污染,碾压前须用水冲去粘附在压路机钢轮上的杂物及砂土,确定碾压设备清洁后方可允许进行碾压。碾压结束待温度冷却至常温才能开放交通。
二、混合料的制备及施工温度
新闻:mma彩色防滑路面材料_彩色防滑路面报价
基于数值仿真方法,针对某航天器结构中的十字梁结构进行了设计。依据结构承载特点,了传力路径,合理地设计了加强区域以及铺层顺序,并采用复合材料整体铺设成型工艺制备了试验件。试验结果表明,经过设计,十字梁结构重量由699 g降低到436 g,减重达37.6%,在6000 N压缩载荷作用下的变形由0.33 mm降低到0.19 mm,满足其刚度设计要求。
三、施工注意事项
1、建议胶结料用量5~6%,颜料用量2~3%左右。
2、凡是需要接触到胶结料的地方(沥青罐、进油/回油管道、沥青泵、拌缸、运输车、摊铺设备及工具等),都需要清洗或者更换。碾压按照常规的黑沥青路面标准碾压方式进行。
3、胶结料在拌合前加热到160~180℃,混合料的出料温度不宜过高,一般控制在160℃左右,根据工程与搅拌站的实际情况(工程量、进度、天气、运输距离等),确定适当的提高或降低出料温度,但不能低于150℃,不能超过180℃。摊铺前必须混合料温度(即到工地温度)在140℃以上,初压温度不得低于120℃,终压温度不得低于90℃。
4、当气温低于10℃时,不宜进行混合料路面施工。如在0~10℃气温施工,必须采取确保施工质量的有效措施;在低于0℃及遇到大风的冬季不应施工,雨天不得铺筑混凝土。
5、非机动车到采用8-9吨压路机压实3-5遍左右,避免采用大的压路机,避免压碎表面石料。
新闻:mma彩色防滑路面材料_彩色防滑路面报价
研究了活性碳纤维(ACF)表面结构、性质与其电吸附性能的相关性,并应用于有机污染物的电吸附去除.结果表明:对于SBET分别为791,1 003,1 314 m2/g的ACF虽然具有相似的孔径分布范围、相近的等电点和相同的表面微观结构,但SBET和微孔体积数的不同将导致ACF物理电阻值和表面电化学阻抗差异较大,从而造成ACF对有机物苯酚的电吸附效果明显不同.而且,ACF的电吸附性能受到吸附质的性质、初始浓度和介质pH值的显著影响.