早期,丙烯聚合只能得到低聚合度的纸化产物,属于非结晶性化合物,无实用价值。1954年,Ziegler和Natta发明了Ziergler-Natta催化剂并制成结晶性聚丙烯,具有较高的立构规整性,称为全同立构聚丙烯或等规聚丙烯。这一研究成果在聚合领域中开拓了新的方向,给聚丙烯大规模的工业化生产和在塑料制品以及纤维生产等方面的广泛应用奠定了基础。
欢迎光临-德州乐陵聚乙烯醇纤维&生产厂家
冷却水在直接接触式换热塔内换热完成后,进入吸收式热泵进行进一步余热回收利用。吸收式热泵采用高温蒸汽或高温热水驱动的溴化锂机组,水做制冷剂,溴化锂做吸收剂。在换热塔内与烟气换热后的冷却水经循环水泵加压后输送到蒸发器,来自汽轮机或余热锅炉的蒸汽或来自余热锅炉的热水进入发生器作为驱动热源,从而在吸收器和冷凝器中产生较高温度的热水。轮机乏汽余热利用对于燃气电厂来说,汽轮机乏汽余热回收同样也是不可轻视的。
1957年,由意大利的Montecatini公司首先实现了聚丙烯的工业化生产。1958-1960年,该公司又将聚丙烯用于纤维生产,开发商品名为Meraklon的聚丙烯纤维,以后美国和加拿大也相继开始生产。1964年后,又开发了捆扎用的聚丙烯膜裂纤维,并由薄膜原纤化制成纺织用纤维及地毯用纱等产品。20世纪70年代,短程纺工艺与设备改进了聚丙烯纤维生产工艺。同期,膨体连续长丝开始用于地毯行业。目前,全球90%的地毯底布和25%的地毯面纱由聚丙烯纤维制得。
欢迎光临-德州乐陵聚乙烯醇纤维&生产厂家
其次,将建筑与绿化复合,做到双方效益的化。建筑与绿化覆盖结合。再次,这种设计方式是一种人性化的方式去解决建筑与城市的生态问题。后,这种方式有利于城市公共空间体系的整合。绿化是与自然环境有机的结合,而不是脱离地面而孤立存在的,是相互依存相互依赖的整体;同时,由于这种空间的连续性,建筑的可达行加了,人们也能够从一个外部环境轻松地进入建筑的上部空间,并享有这份空间提供的视觉与心理上的轻松、愉悦。采用绿色环保节能型建筑材料建筑的护结构隔热保温性能直接决定了室内环境的舒适性与热稳定性,同时对于降低建筑能耗起到了关键作用。
1980年以后,随着聚丙烯和制造聚丙烯纤维新技术的发展,特别是茂金属催化剂的发明使得聚丙烯树脂的品质得到了明显的改善。由于提高了其立构规整性(等规度可达99.5%),从而大大提高了聚丙烯纤维的内在质量。80年代中期,聚丙烯细特纤维替代了部分棉纤维,用于纺织面料及非织造布。加上一步法BCF纺丝机、空气变形机与复合纺丝机的发展以及非织造布的出现和迅速发展,聚丙烯纤维在装饰和产业用方面的用途进一步拓宽。另外,各国对聚丙烯纤维的研究与开发也相当活跃,差别化纤维生产技术的普及和完善,大大扩大了聚丙烯纤维的应用领域。
欢迎光临-德州乐陵聚乙烯醇纤维&生产厂家
一级水生植物滤床(以下简称滤床)床体表面积为.75m,长、宽、高分别为2...3m,运行水深.15m。二级垂直潜流人工湿地(以下简称潜流湿地)表面积为.6m,长、宽、高分别为2.、..6m,床体内部填充厚度为.5m的基质,其中底部填充厚度1cm、粒径为25~55mm的粗砾石作为湿地垫层,之上填充厚度3cm、粒径为1~2mm的陶粒作为主要的吸附介质和微生物生长的附着载体,上层填充厚度1cm、粒径为1~2mm的细砾石,防止陶粒漂浮于水面。