早期,丙烯聚合只能得到低聚合度的纸化产物,属于非结晶性化合物,无实用价值。1954年,Ziegler和Natta发明了Ziergler-Natta催化剂并制成结晶性聚丙烯,具有较高的立构规整性,称为全同立构聚丙烯或等规聚丙烯。这一研究成果在聚合领域中开拓了新的方向,给聚丙烯大规模的工业化生产和在塑料制品以及纤维生产等方面的广泛应用奠定了基础。
广东韶关抗裂纤维-价格
与生物法相比,物化法具有占地面积较小,对废水适应性较强,可去除高浓度有机废水中的有毒有害物质,易于操作和管理等优点。然而,该方法消耗了较多的能源和物料,导致成本昂贵,也可能产生二次污染问题。在实际应用过程中,需要对废水出水水质进行的经济和技术,合理设计水处理方案。化-生化组合法物化和生化法处理高浓度有机废水优缺点并存,两者的组合工艺应用越来越广泛,比如将物化法作为生化法的预处理,能提高对各类污染物的去除效果。
1957年,由意大利的Montecatini公司首先实现了聚丙烯的工业化生产。1958-1960年,该公司又将聚丙烯用于纤维生产,开发商品名为Meraklon的聚丙烯纤维,以后美国和加拿大也相继开始生产。
1964年后,又开发了捆扎用的聚丙烯膜裂纤维,并由薄膜原纤化制成纺织用纤维及地毯用纱等产品。
20世纪70年代,短程纺工艺与设备改进了聚丙烯纤维生产工艺。同期,膨体连续长丝开始用于地毯行业。目前,全球90%的地毯底布和25%的地毯面纱由聚丙烯纤维制得。
1980年以后,随着聚丙烯和制造聚丙烯纤维新技术的发展,特别是茂金属催化剂的发明使得聚丙烯树脂的品质得到了明显的改善。由于提高了其立构规整性(等规度可达99.5%),从而大大提高了聚丙烯纤维的内在质量。80年代中期,聚丙烯细特纤维替代了部分棉纤维,用于纺织面料及非织造布。加上一步法BCF纺丝机、空气变形机与复合纺丝机的发展以及非织造布的出现和迅速发展,聚丙烯纤维在装饰和产业用方面的用途进一步拓宽。另外,各国对聚丙烯纤维的研究与开发也相当活跃,差别化纤维生产技术的普及和完善,大大扩大了聚丙烯纤维的应用领域。
低温非丝状菌污泥膨胀的机理特征及对污水处理的影响污泥膨胀分为丝状菌污泥膨胀和非丝状菌污泥膨胀,非丝状菌污泥膨胀又分为菌胶团污泥膨胀和菌胶团解体污泥膨胀。低温非丝状菌污泥膨胀属于菌胶团污泥膨胀。理特征在低温的环境中,微生物活性变差,在其代谢过程中不能将废水中有机物完全氧化降解,而以多糖类高粘性物质储存起来,并形成菌体外高粘性物质覆盖和积累,一是由于这种高黏性代谢产物分子中具有许多氢,与水的结合力很强,呈亲水性,是一种非常稳定的亲水凝胶体,使得活性污泥不易与水分离;二是菌体外覆盖的高粘性代谢物能吸附生化曝气产生的细小气泡,使其密度变小,沉降性变差,是造成低温非丝状菌活性污泥膨胀的主要因素。污水处理的影响实践经验,污泥膨胀程度轻时,二沉池泥位上升,可以看到清晰的泥水界面,上清液非常清澈,处理水质优良;膨胀情况较重时,二沉池在进水水量高峰时段出现污泥随出水流失,造成出水COSS、TP浓度等超标现象;膨胀情况严重时,二沉池停留时间不能满足泥水分离需要,大量污泥随出水流失,造成出水COSS、TP浓度等超标,系统运行瘫痪。温非丝状菌污泥膨胀的判断低温非丝状菌活性污泥膨胀通常在我国北方污水处理厂冬季生化系统水温低于12℃时发生,随着生化系统水温下降,污泥膨胀程度愈加严重,膨胀严重的SVI值能达到4mL/g左右。